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INTRODUCTION

The High Energy Density Matter (HEDM) program was initiated at the Air Force
Rocket Propulsion Laboratory (now the Phillips Laboratory, Propulsion Directorate) in
1987 to investigate potential new high energy propellants for advanced rockets and
missiles (1). One major focus of this program is to determine the feasibility of trapping
energetic atoms or small molecules in cryogenic solids, such as solid hydrogen and solid
oxygen. A program to study this idea was conducted by the National Bureau of Standards
from 1956 to 1959 and concluded that, although free radicals could make great
improvements in rocket performance, the difficulties associated with production, storage,
and maximum concentrations preclude their use as fuels (2). Improvements in technology
and theory since the NBS study provided impetus for a reinvestigation of the use ot "frep.
radical" additives to fuels, giving rise to the HEDM program.

A common figure of merit for a propellant is the specific impulse, Isp, measured in
"lb sec/Ib", or more typically in "sec" (2,3,4). The Isp can be used to compare the
performance of a series of propellants, as long as all the assumed conditions remain
constant. Such comparisons can point to areas of research that can result in the best
increases in rocket performance. Calculations of the Isp for atoms and small molecules
stored at various concentrations in solid cryogenic hydrogen have been completed and
are reported here.

Since the specific impulse depends on both the energy content and the mass of the
propellant (4), only low mass atoms and small molecules can be expected to result in
improvements in rocket propulsion. A survey of the combustion energies of the elements
(with oxygen) from hydrogen to argon indicate which elements might lead to significant
improvements (1) in specific impulse: beryllium, boron, lithium, carbon, aluminum, silicon,
and magnesium, in order of decreasing combustion energy. To accurately determine the
properties of these elements with respect to rocket propulsion, calculations of the specific
impulse under set conditions are necessary.

SPECIFIC IMPULSE CALCULATIONS

Calculations of the specific impulse (Isp) of atom and molecule additive
hydrogen/oxygen systems were conducted using the AFAL (Air Force Astronautics
Laboratory, recently renamed the Phillips Laboratory) Theoretical Isp Program, Micro
Version, by Beckman and Acree (5). This program requires input data consisting of the
molar percentage of the additive, heat of formation of tha additive, rocket chamber
pressure and exhaust pressure. The fraction of hydrogen and oxygen in the system and
the temperature of the combustion chamber, throat, and exhaust can be varied to
maximize the 1,n for the entire system. The rocket chamber pressure and exhaust
pressure can be fixed to specific values to give a consistent comparison among the
various additives. These values were fixed to 1000 and 14.696 psi, respectively. The
program also has the capability of calculating an entire grid of data values for a range of
input concentration values. This grid calculation can be used to plot a 3D surface or a
contour plot of the specific impulse, temperature, and chemical composition of the entire
system as calculated under the particular values for chamber and exhaust pressures.
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The heats of formation of the gaseous atoms from elements in their standard states
were obtained from the JANAFtables (6), the Handbook of Chemistry and Physics (7) and
the CODAI& (Committee on Data for Science and Technology) values given therein.
The heat uf formation for each of the atoms considered in this study are given in Table 1.
The CODATA values were used for all the atoms.

Initially the Isp values were calculated for gas phase atoms as a mole percentage
in gaseous hydrogen. The majority of the calculations assume gas phase atoms as a
mole percentage in solid hydrogen. The "true" heats of formation for a particular
concentration of an atomic additive in solid hydrogen will depend on the interaction
between the isolated atom and the solid hydrogen host matrix. The strength of these
interactions are not known in general, but should be relatively small. Therefore, the
atomic heats of formation should provide a close approximation to the "true" heats of
formation of these species in solid hydrogen.

The heat of formation for solid hydrogen was determined by adding the heat of
fusion of hydrogen (plus a small heat capacity for heating the liquid to its boiling point) to
the heat of formetion for liquid hydrogen. It turns out that this adds only 0.05 Kcal/mol to
the AHf value for liquid hydrogen, giving a value of -2.210 Kcal/mol for solid hydrogen at
4K. The density of solid hydrogen also increases to 0.08 grams/cc, compared to 0.07
grams/cc for liquid hydrogen.

The calculations of the Is program were tested by comparing the results with Isp
values previously reported. Under the same operating conditions, the program gave the
same lsp values for several systems reported by Rockwell International ("Theoretical
Performance of Rocket Propellant Combinations" wall chart, from Rocketdyne Division).
The program was also run under the same conditions reported for the Space Shuttle Main
Engine (SSME): 3260 psi chamber pressure, epsilon of 77.5, O/F weight ratio of 6:1, with
LOX/LH 2 , and resulted in an Isp value of 465.4 sec, compared with the reported
meure value of 453.5 sec. However, the specific impulse values reported here should
only be used for comparing like systems, since the heats of formation for the additive/sH2
material will be slightly different from the values used here.
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TABLE 1. Heats of Formation (Kcal/mol) Used in Isp Calculation

Atom JANAF 6  CRC 7  CO-DATA 8  AHf used

H 53.103±.001 52.102±.001 52.103±.001 52.10
Li 38.07±.24 38.6 ±.4 38.07 ±.24 38.1
Be 77.44±1.2 77.5 ±1.5 77.4 ±1.2 77.4
B 133.8 ±2.9 139 ±3 135.0 ±1.2 135.0
C 171.29 ±.11 171.29 ±.11 171.29 ±.11 171.3
N 112.97 ±.10 112.97 ±.10 112.97 ±.10 113.0
Mg 35.16±.19 35.0 ±.3 35.16 ±.19 35.2
Al 78.8 ±1.0 78.8 ±1.0 78.87 ±.96 78.8

H2_ (s) I_ __-2.210

SPECIFIC IMPULSE OF ATOMS IN SOLID HYDROGEN

Recent studies conducted as part of the HEDM program have investigated the
limitations of trapping atoms in cryogenic solids (9). Reference 9 concluded that
concentrations of up to 10 % may be possible, depending on the crystal structure and the
trapping site that the atom occupies. At the higher concentration levels, a certain
concentration of dimers and higher order clusters is inevitable. However, for
concentrations of 2 %, the atoms comprise about 90 % of the trapped species, and for 5
%, the atoms comprise at least 50 % of the trapped species. The maximum mole fraction
for a face-centered cubic (fcc) crystal is 7.7 % for Li atoms, according to the model in
Reference 9. Therefore, a loading of 5 % for atoms in solid hydrogen seems reasonabie,
with higher percentages possible.

Specific impulse calculations, under the conditions defined above and conducted
for 5 mole percent of "light" atoms in gaseous and cryogenic solid hydrogen, are
presented in Table 2. The values for pure solid hydrogen and gaseous hydrogen are
listed for comparison. In addition, the Isp value for liquid hydrogen under these conditions
is 390 seconds, essentially the same as for solid hydrogen, as exoected due to the small
difference in the heat of formation between liquid and solid hydrogen. Table 2 also
contains the increase in specific impules for each additive in solid hydrogen over the value
for liquid hydrogen/liquid oxygen (390 seconds). As can be seen from this comparison,
increases of over 20 % can be obtained.
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The percent increase in the Ip of the 5 mole percent additives in solid hydrogen vs
gaseous hydrogen (10) vary between about 4 % and 10 %. Since only the AHf for
hydrogen changes between the gas and solid calculations, the combustion conditions
must vary in different ways with the various additives. One important variable that can
change is the temperature in the combustion chamber, which in turn alters the
thermochemical conditions in the chamber. The chemistry and the temperature conditions
for these additives will be explored in a later section.

TABLE 2. Isp of Atoms for 5 Mole Percent in Hydrogen

Isp 5% Isp 5% Delta Delta Increase of solid
Species w/sH2  w/gH2  g-s g-s over LH 2 \LOX

(sec) (sec) (sec) (%) (sec) %

H2  (389) (403) 14 3.5 -14 -4
H 407 426 19 4.5 17 4
Li 401 426 25 5.9 11 3
Be 451 492 41 8.3 61 16
B 470 501 31 6.2 80 21
C 469 518 49 9.5 79 20
N 414 435 21 4.8 24 6
Mg 398 415 17 4.1 8 2
Al 425 452 27 6.0 35 9

SPECIFIC IMPULSE CONTOUR CALCULATIONS

Calculations of the entire set of conditions for a mix of propellants can be used to
study the variation in specific impulse over the full range of additives. The matrix of data,
which consists of a range of fuel, oxidizer, Isp, and other relevant parameters, can be
analyzed by plotting a 3D contour plot (essentially a topological map) of the additive vs the
oxidizer vs the specific impulse. Such plots contain a wealth of information, showing the
ISP for no additive (along the X axis), the Isp for the additive without oxidizer (which would
be a monopropellant, along the Y axis), and the optimum Isp for any given additive
amount. Calculations of this type were completed for the atoms of interest in this study
and are presented in Figures 1 through 8. The top graph (labeled a) in each figure shows
the full range of interesting additive amounts for oxidizer amounts up to 25 mole percent.
The bottom graph (labeled b) shows the range of additives that seems practical, as
determined by the study discussed above (9).
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Specific Impulse Contour Plot for Lithium Atoms
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Expanded Specific Impulse Contour Plot for Lithium Atoms
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Specific Impulse Contour Plot for Beryllium Atoms
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Specific Impulse Contour Plot for Carbon Atoms
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Specific Impulse Contour Plot for Nitrogen Atoms
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Specific Impulse Contour Plot for Magnesium Atoms
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Expanded Specific Impulse Contour Plot for Magnesium Atoms
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Specific Impulse Contour Plot for Aluminum
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The contour for hydrogen atoms in solid hydrogen (Fig. 1, a and b) shows a slow
increase in Isp from 0 to 10 mole percent, but large gains for amounts of H/sH2 over 10%
and without LOX. If a propellant of 100% hydrogen atoms could be obtained (10), the Isp
would increase to over 1400 seconds. However, for the quantity of hydrogen atoms that
can be trapped in solid hydrogen at low temperature and pressures less than 100
atmospheres, the specific impulse gains are moderate at best (12). Note that, for
hydrogen atom quantities over 12%, adding liquid oxygen actually reduces the specific
impulse.

The 0 to 10 mole percent contour (Fig. 2b) for lithium atoms shows about the same
gains as obtained with hydrogen. The maximum Isp gain (Fig. 2a) results from a lithium
concentration of over 20%, which is probably unobtainable.

The Isp gains for beryllium are substantially greater than for either hydrogen atoms
or lithium atoms. The Isp increases rapidly over the 1 to 10% range (Fig. 3 b) of interest.
The optimum addition of oxygen decreases from 20% to about 4% over this range. The
optimum lsp (Fig. 3a) is still over 10%, but most of the gain results from lower amounts.
Unfortunately, beryllium and beryllium oxides are extremely toxic (4), and, therefore,
probably not useful as a "near-Earth" rocket propellant. However, the use of beryllium
propellants for deep space applications may be feasible.

The gains in Il for boron atoms in solid hydrogen show the same rapid increase at
relatively low concentrations (Fig. 4b). As with beryllium, the optimum oxidizer amount
decreases from 20% to about 4% and the largest gains in Isp result from additions up to
10% of boron atoms. At just over 10%, addition of oxygen becomes unfavorable for
optimum Isp (Fig. 4a), which would provide "monopropellant" capabilities. A boron atom
concentration of 7% results in a 100 second Isp increase over liquid hydrogen/liquid
oxygen under these conditions. Even at the 5% level, boron atoms in solid hydrogen and
without LOX could give a 15 second Isp increase over LOX/LH 2.

The specific impulse gains for carbon are quite similar to boron. Once again, there
is a rapid increase from the 1 to 10% additive range (Fig. 5b). However, carbon atoms in
solid hydrogen become a "monopropellant" at much lower concentrations: the "turn-over"
point is at about 4.5% carbon atoms. At 7% carbon atoms in solid hydrogen, an Isp
increase cr over 130 seconds is possible as a "monopropellant."

Nitrogen atoms in solid hydrogen result in contour plots similar in form to carbon
atoms, except for lower gains at the 1 to 10% level (Fig. 6b). The turn-over point is about
9% and therefore oxygen is required for optimum specific impulse at the 5 or 7% level.

Magnesium atoms show the smallest increase in Isp over 1 to 10% concentration
range (Fig. 7b). An increase of just 13 seconds results from a 7% concentration of
magnesium atoms. Even the optimum Isp (Fig. 7a) is only abbut 25 seconds greater than
LOX/LH 2. Therefore, it is very unlikely that trapping of magnesum atoms in cryogenic solid
hydrogen will be worth the effort.

Aluminum seems to be an intermediate case in terms of Isp increase. The gains in
specific impulse are greater than lithium and magnesium, but less than boron and carbon.
The potential gain (Fig. 8b) is very similar to nitrogen, except that aluminum always needs
oxygen to give an optimum Isp (Fig. 8a). At the 7% level, aluminum in solid hydrogen
results in about 50 seconds increase in specific impulse and requires about 5% liquid
oxygen.
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EXHAUST PRODUCT CONTOUR CALCULATIONS

The Theoretical lp Program (5) also has the capability to tabulate output products
in the chamber, throat, and exhaust. Contour plots of the exhaust products can show the
reasons for the changes in the specific impulse curves. Essentially these plots detail the
variations in the chemical composition of the exhaust products, which is also related to the
exhaust temperature and the specific impulse. Figures 9 through 16 are chemistry
contour plots for the above listed atoms in solid hydrogen.

In each figure, the first contour plot (always labeled "a") shows the overall trend for
each exhaust product. These plots show the global picture for each atomic or molecular
product and how these products relate to each other in terms of the mole percentages of
the additive and oxidizer. The exact shape and contour should not be taken too seriously
since the minimum levels for each specie differ. These "global" plots are provided to show
only the general area of each exhaust product.

The data points for these plots are spaced at 1% intervals (as are the previous Isp
contour plots) and plotted using a program capable of 3D contour maps that interpolata
between points and smooths rough edges. The interaction between the program and the
data can result in variations in the contours that are dependent upon the input parameters
to the plotting program. When interpreting these plots, consider this caveat.

For each additive, the output product contours are plotted seperately to show the
variations in concentration in greater detail. The contour numbers are derived from the
output of the I program, which gives product species concentrations in moles (of product
species) per 1;O grams of exhaust. The phase of the product is specifically labeled when
the product is a solid or liquid. Exhaust products that do not have a phase label are
always gaseous.

Hydrogen Atoms

The output products for combustion of hydrogen atoms in solid hydrogen are
mainly liquid water and steam, essentially the same as for liquid hydrogen / LOX
combustion. At higher LOX and hydrogen atom concentrations, both H atoms and OH
radicals increase, indicating losses from incomplete recombination. This same area in the
specific impulse contour plot shows greatly reduced performance values, as expected. At
low hydrogen atom and LOX concentrations, liquid water is produced in the exhaust
stream as a result of relatively low exhaust temperatures. This is also a region of low
specific impulse values.

14
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Exhaust Product Contour Plot for H Atoms

Lithium Atoms

The exhaust product contours for lithium atoms in solid hydrogen are considerably
more complicated than the hydrogen contours. There are nine different major products
and several minor products (not shown). The increase in unreacted lithium atoms (Fig.
10b) above 20 mole percent results in the limit of the specific impulse optimum to around
that same value. The unreacted atoms result from an increase in the combustion
temperature that drives the thermochemistry away from combustion with oxygen. At low
oxygen concentrations, the major output products are liquid and solid LiH. The expected
optimum product, Li20, occurs at fairly low oxygen levels. The solid phase of Li20
corresponds to the optimum specific impulse region (see Fig. 2a). The partially lithiated
output product, lUOH, is prevalent at higher oxidizer ratios or low lithium concentrations.
As might be expected, this product is dominant when the lithium and LOX mole ratios are
roughly equavalent, while the fully lithiated product, Li20, is prevalent when the lithium
concentration is greater than the LOX concentration.
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Beryllium Atoms

The contours for beryllium atoms contain eight major output products. At low
oxidizer levels, uncombusted beryllium is prevalent in solid form at relatively low atom
concentrations and as a liquid or gas at higher concentrations. As with lithium, the
optimum product, BeO, is prevalent when the atom and LOX concentrations are relatively
equal. The'solid alpha phase of BeO corresponds to the optimum specific impulse region,
as ran be seen from a comparison of Figures 3a and 11 e. At high LOX concentrations,
the major Be containing species begins to shift to beryllium hydroxide (BeH2 0 2 ). Once
again, please note that the waviness of the contours, especially at low levels, is mostly an
effect of the plotting program and should be considered to contain some degree of error.
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FIGURE 11 a
Exhaust Product Contour Plot for Beryllium
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Exhaust Product Contour Plot for Be (s)
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Exhaust Product Contour Plot for Be (I)
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Exhaust Product Contour Plot for Be (g)
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Exhaust Product Contour Plot for BeO (s,a)
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Exhaust Product Contour Plot for BeO (sb)
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Exhaust Product Contour Plot for Bell20 2
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Exhaust Product Contour Plot for H20
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Boron

There are nine major exhaust products for combustion of boron atoms in solid
hydrogen with liquid oxygen. Solid boron is formed at high boron atom concentrations and
low LOX amounts. This same region also corresponds to the maximum specific impulse
region. Both BO and HBO are also formed at high boron atom concentrations, depending
on the oxidizer concentrations. At moderate boron atom levels, both HOBO and B20 3 are
prevalent. There is a shift from HOBO to B20 3 when the liquid oxygen level is reduced
from LOX > B atoms to LOX < B atoms. The optimum specific impulse levels for
potentially obtainable concentrations of boron atoms (i.e., 1 to 8 mole percent boron
atoms with about 5 mole percent LOX) correspond mostly to the B203 regions. Perhaps
the best system for boron would be 7 mole % boron atoms in solid hydrogen combusted
with 5 mole % LOX, giving an Isp increase of about 100 seconds (over LH2 / LOX) and
B20 3 (liquid) as the major exhaust product.
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FIGURE 12a
Exhaust Product Contour Plot for Boron
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Exhaust Product Contour Plot for B (s,b)
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FIGURE 12c
Exhaust Product Contour Plot for HBO
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Exhaust Product Contour Plot for HOBO
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FIGURE 12f
Exhaust Product Contour Plot for HOBO (s)
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Exhaust Product Contour Plot for 8203 (S)
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Exhaust Product Contour Plot for B20 3 (I)
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Exhaust Product Contour Plot for B203 (g)
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FIGURE 12j
Exhaust Product Contour Plot for H20

Carbon

The carbon system is relatively simple compared with lithium, beryllium, or boron.
There are only five major exhaust products. For high carbon atom levels and low LOX,
solid carbon in the form of graphite is formed in the exhaust. At lower carbon atom levels
and low LOX, methane is formed as the major exhaust product. Note that for all optimum
specific impulse levels where the carbon atom concentrations are greater than 4%, either
graphite or methane is formed. This is due to the low LOX concentrations needed to
optimize the specific impulse at relatively low carbon atom densities. When higher
amounts of LOX are added, the output products shift to CO and small amounts of C0 2.
To obtain the optimum specific impulse for the carbon system at 7 mole %, no LOX is
needed, there is a gain of about 120 seconds in Isp (over.LH2 / LOX), and the major
exhaust product is methane.
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Exhaust Product Contour Plot for Carbon

.30

S20

o
U rv

0 10 20 30

Mole 7. LOX

FIGURE 13b
Exhaust Product Contour Plot for C (graphite)
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Exhaust Product Contour Plot for CH4
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Exhaust Product Contour Plot for CO
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FIGURE 13e
Exhaust Product Contour Plot for CO 2
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Exhaust Product Contour Plot for H20
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Nitrogen

The nitrogen atom in solid hydrogen system is also very simple, containing only
four major exhaust products. At almost all concentration levels, the only output products
are molecular nitrogen (N2) and gaseous water. For low LOX and low nitrogen atom
levels, the major product is ammonia (NH4). Only at high N atom and high LOX levels do
the products begin to shift to NO. Although nitrogen atoms give only moderate specific
impulse gains at 1 to 8 mole % atoms, the clean and simple exhaust products may provide
an environmentally acceptable propellant.
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FIGURE 14a

Exhaust Product Contour Plot for Nitrogen
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FIGURE 14b
Exhaust Product Contour Plot for N2
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Exhaust Product Contour Plot for NH3
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Exhaust Product Contour Plot for NO
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Exhaust Product Contour Plot for H20
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Magnesium

The magnesium system is also relatively simple. At high magnesium atom levels,
the major products are unreacted magnesium atoms and liquid magnesium. For
moderate magnesium atom and LOX levels, magnesium hydroxide (Mg(OH)2) is primarily
formed in the exhaust. At all other levels, MgO (solid) is formed. Since the specific
impulse gains are small for this system and due to the less desirable exhaust products,
magnesium atoms in solid hydrogen is probably not a suitable system for further
consideration.
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FIGURE 15a
Exhaust Product Contour Plot for Magnesium
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Exhaust Product Contour Plot for Mg (g)
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Exhaust Product Contour Plot for H20

Aluminum

The aluminum system is somewhat complicated, with eight different major exhaust
products. For relatively low LOX levels, aluminum liquid or solid is formed in the exhaust
stream. At high aluminum atom concentrations and moderate LOX levels, both
uncombusted Ai and partially combusted A120 are the major products. When the oxidizer
concentration is increased high enough or the aluminum atom level is low enough, the
major product is the fully oxidized A120 3. The most interesting region is at the optimum
specific impulse area, around 9 mole % Al atoms and about 7 mole % LOX. At that
location, the gain in specific impulse (over LH2 / LOX) is about 60 seconds and the major
output products are solid A120 3 in the alpha phase and gaseo~is water. If a rocket system
can be designed that can withstand solid exhaust products, this may be a system worth
consideration.
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Exhaust Product Contour Plot for Aluminum
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Exhaust Product Contour Plot for Al (s)
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Exhaust Product Contour Plot for Al (1)
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Exhaust Product Contour Plot for Al (g)
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Exhaust Product Contour Plot for A120 3 (I)
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Exhaust Product Contour Plot for A120 3 (s,a)
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Exhaust Product Contour Plot for H20

EXHAUST PRODUCTS FOR FIXED 5 MOLE PERCENT ATOMS IN SOLID HYDROGEN

The above contour plots of the output products shows complicated patterns that
can be simplified by taking "cuts" of the concentrations of all the important species at a
given concentration of additive. Cuts at 5 mole percent of these atoms in solid hydrogen
show the important output products and are given in Figures 17 through 24. The top
graph in each plot shows the temperature in the chamber and the optimized specific
impulse for liquid oxygen concentrations from 0 to 30 mole percent. The bottom graph
shows the cuts for the major exhaust products for the same LOX concentrations.

From these two plots, the variations in the chamber temperature and the specific
impulse can be linked to the changes in the exhaust species. In each case, a change in
the major exhaust species is usually accompanied by a variation in the increase in the
chamber temperature. For example, in Figure 18 (showing 5% lithium in solid hydrogen),
small changes in the increase in the chamber pressure can be seen for most of the
changes in the major exhaust species, such as the change from LiOH gas to LiOH liquid
over the 7 to 8 mole % LOX range.

The major exhaust species for the maximum specific impulse under these
conditions can also be determined from a comparison of the top and bottom plots. For
example, in Figure 24 (showing 5% aluminum in solid hydrogen) the maximum specific
impulse corresponds to about 425 seconds and the major exhaust product at that Isp
value is A12 0 3 liquid at 4 mole % LOX.
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Fixed 5% Concentration Plot for Hydrogen Atoms in Solid H2
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Fixed 5% Concentration Plot for Beryllium Atoms in Solid H2
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Fixed 5% Concentration Plot for Carbon Atoms in Solid H2
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Fixed 5% Concentration Plot for Nitrogen Atoms in Solid H2
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Fixed 5% Concentration Plot for Magnesium- Atoms in Solid H2
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CONCLUSIONS

The specific impulse and exhaust product contours presented above can be useful
for determining which atomic systems in solid cryogenic hydrogen may be of the greatest
benefit. From this data it can be concluded that the atomic hydrogen, lithium, and
magnesium systems are probably not of great interest. The beryllium system is also
probably not of great interest, unless the extreme toxicity problems can be overcome,
possibly by limiting use to only deep space applications. Of the remaining atomic
systems, nitrogen and aluminum result in moderate specific impulse gains at the 5 mole
percent level, although they may be of interest because of the relatively environmentally
"clean" exhaust products. The boron system gives the greatest gains in Isp, but the
exhaust products may be somewhat undesirable and there remains the problem of HOBO
formation due to kinetics (13). The carbon system has perhaps the greatest potential,
giving substantial gains for fairly low atom concentrations and fairly "clean" exhaust
products.

For any real system of atoms trapped in cryogenic solid hydrogen, additional
trapped species have to be considered in any performance estimates. For example,
energetic deposition of atoms into solid hydrogen surfaces will also produce a variety of
molecular species, some of which could substantially reduce the specific impulse, while
others could actually increase the performance levels. Details of the effects of small
molecular species on the specific impulse will be examined in the next report in this series.

There are many basic and technical problems to the use of atomic additives to solid
hydrogen propellants. There is a continuing effort in the HEDM program to explore the
technology necessary to implement these exotic propellants. Many of these problems
have been addressed in References 1, 9, 10 and 12. If these difficulties can be
overcome, the bennifits are great - increased payload to orbit, large cost savings, single-
stage-to-orbit capability, and potential simplification of launch systems.
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